111B Section Week 9

Overview: Work on the following problems one at a time, either by yourself or in small-groups. After a sufficient amount of time has passed, we will discuss the solutions as a class. Attending section counts toward your participation grade.

- 1. Let R be a commutative ring and $I \subseteq R$ an ideal. The *radical* of I is the set is the set rad $I = \{r \in R : r^n \in I \text{ for some } n \in \mathbb{N}\}$. An ideal is called *radical* if rad I = I.
 - (a) Prove that rad I is an ideal containing I and that $(\operatorname{rad} I)/I = \mathfrak{N}(R/I)$.
 - (b) Prove that every prime ideal is radical.
- 2. Let R be a commutative ring with 1. The spectrum Spec R is the set of all prime ideals of R. For any ideal $I \subseteq R$, define

$$V(I) = \{ P \in \operatorname{Spec} R : I \subseteq P \}.$$

- (a) For any ideals I, J of R, show that $V(I) \cup V(J) = V(IJ) = V(I \cap J)$.
- (b) If $\{I_{\alpha}\}$ is any collection of ideals of R, show that $V(\sum_{\alpha} I_{\alpha}) = \bigcap_{\alpha} V(I_{\alpha})$.
- 3. Let R and S be a commutative ring with 1 and let $\varphi : R \to S$ be a unital ring homomorphism.
 - (a) Show that there is a function φ^* : Spec $S \to$ Spec R defined by the rule $\varphi^*(P) = \varphi^{-1}(P)$ for any $P \in$ Spec R.
 - (b) For any ideal I of R, show that $(\varphi^*)^{-1}(V(I)) = V(\varphi(I)S)$ where $\varphi(I)S \subseteq S$ is the ideal generated by $\varphi(I)$.